Rayleigh's criterion defines the minimum resolvable distance between two incoherent point sources as the diffraction-limited spot size. Enhancing the resolution beyond this limit has been a crucial outstanding problem for many years. A number of solutions that have been realized, such as those based on near-field imaging and nonlinear interactions, but they are expensive and not universally applicable. A recent theoretical breakthrough demonstrated that "Rayleigh's curse" can be resolved by coherent detection of the image in certain transverse electromagnetic modes, rather than implementing the traditional imaging procedure.
To date, there exist proof-of-principle experimental results demonstrating the plausibility of this approach. Our goal is to test this approach in a variety of settings that are relevant for practical application, evaluate its advantages and limitations. If successful, it will result in a revolutionary imaging technology with a potential to change the faces of all fields of science and technology that involve optical imaging, including astronomy, biology, medicine and nanotechnology, as well as optomechanical industry.